Epigenetic regulation of the MGMT and hMSH6 DNA repair genes in cells resistant to methylating agents.
نویسندگان
چکیده
We investigated the relationship between DNA cytosine methylation and the expression of two genes associated with resistance to DNA methylation damage. Variants of RajiMex- cells acquired resistance to N-methyl-N-nitrosourea by either reactivating a previously silent O6-methylguanine-DNA methyltransferase (MGMT) gene or by repressing the hMSH6 mismatch repair gene. DNA sequencing and measurements of mRNA and enzyme levels revealed that MGMT activity was not correlated with methylation of the core MGMT promoter. Treatment with the demethylating agent 5-azadeoxycytidine reduced MGMT mRNA and enzyme levels, indicating that methylation of some nonpromoter sequences may be required for MGMT gene expression. In contrast, both hMSH6 mRNA and protein levels were increased by 5-azadeoxycytidine treatment of an N-methyl-N-nitrosourea-resistant variant that did not express detectable hMSH6, which implies that this gene was transcriptionally silenced by cytosine methylation. This could be substantiated by in vitro modification of the CpG sites in the hMSH6 promoter with restriction methylase M.SssI, which abolished the transcription of a reporter gene under its control in a transient transfection assay. Taken together, our data show that treatment with chemical methylating agents alters gene expression patterns through increased CpG methylation of genomic DNA, and thereby permits the emergence and selection of clones that are resistant to these agents due to increased repair or tolerance of O6-methylguanine.
منابع مشابه
O6-Methylguanine-DNA Methyltransferase and ATP-Binding Cassette Membrane Transporter G2 Promotor Methylation: Can Predict the Response to Chemotherapy in Advanced Breast Cancer?
Background: ATP-binding cassette membrane transporter G2 (ABCG2) gene is one of transporter family and well characterized for their association with chemoresistance. Promoter methylation is a mechanism for regulation of gene expression. O6-Methyl guanine DNA methyl transferase (MGMT) gene plays a fundamental role in DNA repair. MGMT has the ability to remove alkyl adducts from DNA at the O6 pos...
متن کاملThe clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer
The stability and integrity of the human genome are maintained by the DNA damage repair (DDR) system. Unrepaired DNA damage is a major source of potentially mutagenic lesions that drive carcinogenesis. In addition to gene mutation, DNA methylation occurs more frequently in DDR genes in human cancer. Thus, DNA methylation may play more important roles in DNA damage repair genes to drive carcinog...
متن کاملInduction of the alkyltransferase (MGMT) gene by DNA damaging agents and the glucocorticoid dexamethasone and comparison with the response of base excision repair genes.
Repair of alkylated bases in DNA is performed by O6-methylguanine-DNA methyltransferase (MGMT) and a set of enzymes of the base excision repair pathway involving N-methylpurine-DNA glycosylase (MPG), apurinic endonuclease (APE), DNA polymerase beta (Pol beta) and DNA ligase. The level of expression of these enzymes may exert a profound effect on resistance of cells towards alkylating drugs. We ...
متن کاملInvestigation of cell death induced by N-methyl-N-nitrosourea in cell lines of human origin and implication of RNA binding protein alterations.
Methylating agents, a widely used class of anticancer drugs, induce DNA methylation adducts, the most biologically significant being O(6)-methylguanine. The efficacy of these drugs depends on the interplay of three DNA repair systems: base excision repair (BER), methyl-directed mismatch repair (MMR) and direct damage reversal by O(6)-methylguanine-DNA methyltransferase (MGMT). An MGMT-inducible...
متن کاملCharacterization of a new trabectedin-resistant myxoid liposarcoma cell line that shows collateral sensitivity to methylating agents.
Myxoid Liposarcomas (MLS), characterized by the expression of FUS-CHOP fusion gene are clinically very sensitive to the DNA binding antitumor agent, trabectedin. However, resistance eventually occurs, preventing disease eradication. To investigate the mechanisms of resistance, a trabectedin resistant cell line, 402-91/ET, was developed. The resistance to trabectedin was not related to the expre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 60 12 شماره
صفحات -
تاریخ انتشار 2000